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The self-terms of the intermolecular force constants are derived by employing the condition of trans- 
lation invariance. The self-terms thus obtained ensure that the dynamical matrices of the crystal are 
always Hermitian. The role of the condition of rotation invariance is discussed. The expressions for 
the self-terms differ in part from those published by Dolling, Pawley & Powell [Proc. Roy. Soc. (1973). 
A333, 363-384]. The conditions under which the self-terms of these authors are identical with the 
present ones are discussed. 

1. Introduction 

In a recent paper Dolling, Pawley & Powell (1973) - 
hereafter referred to as DPP - published expressions 
for the so-called 'self-terms' of intermolecular force 
constants. For a molecular crystal the self-term force- 
constant matrix is a 6 x 6 matrix which can be written 
in the form 

936= ( 9t 9le°rr ) , (I) 
9corr 9cot 

1 2 where 9,, 9~ot, 9tort, 9~orr are of order 3 × 3 and refer 
to translation, rotation and correlation (of translation 
and rotation). DPP state that they derive the self-term 
matrices 9, and q~or~ from the condition of translation 
invariance, and 1 9~orr and qbot from the condition of 
rotation invariance; the derivation itself is not given. 
DPP further remark that the blocks 1 9corr and 9cot of 
q~6 may become asymmetric, particularly when the crys- 
tal symmetry is low, so that the dynamical matrices of 
the crystal will no longer be Hermitian. In this situa- 
tion DPP propose additional constraints on the force 
constants in order to guarantee that the dynamical 
matrices are Hermitian. 

In this paper we shall rederive the self-terms of the 
intermolecular force constants. We shall show that 

(1) simpler expressions for ?~orr and qbot can be ob- 
tained when only the condition of translation invari- 
ance is used, and that these expressions ensure that the 
dynamical matrices of the crystal are always Hermitian; 

(2) the self-term matrices t 9¢o~ and qbot, obtained 
with the aid of the condition of translation invariance, 
are equal to DPP's expressions only when the condi- 
tion of rotation invariance is imposed on the inter- 
atomic force constants used. 

2. Derivation of the self-terms 

The concept which we shall use in the following con- 
sists of treating the molecular crystal as an atomic 
crystal. We express the intermolecular forces through 
the interatomic forces which occur among the atoms of 
different molecules, and we exclude the interatomic 

forces which occur among the atoms of one and the 
same molecule. This procedure is advantageous in that 
we can introduce the conditions which are well known 
to hold for the interatomic force constants into our 
consideration and thus derive corresponding conditions 
for the intermolecular force constants. 

First, we recall the conditions which hold for the 
interatomic force constants which are important for 
our consideration. In a preceding paper (Scheringer, 
1974) we showed that the sums 

½[qJ(lkr, l 'k '  r') + ~r ( l ' k '  r', lkr)] - 9t, lkr, l 'k '  r') (2a) 

enter into the dynamical matrices of the crystal, but 
not into the single interatomic force-constant matrices 
qJ(lkr, FUr') .  l, l' denote the cells in the crystal; k, k'  the 
molecules in the cell; and r,r'  the atoms in the mole- 
cule. The superscript T denotes the transposed matrix. 
With the definition (2a) the relation 

?',lkr, l 'k '  r') = ?r( l 'k '  r', lkr) (2b) 

is valid for any force-constant matrix qJ(lkr, FUr').  (2b) 
ensures that the dynamical matrices are Hermitian. 
For the cases l 'k '  ¢ l k  the force constants are calculated 
as the second derivatives of the potential energy of the 
crystal, and hence the corresponding relation holds for 
the force constants, namely 

• (lkr, l 'k 'r ')  = ~r ( l ' k ' r ' ,  lkr) ,  l ' k ' r ' ¢  lkr ,  (3) 

whereby the sum (2a) reduces. The self-term matrix 
• (lkr, lkr), however, is not calculated as the second 
derivative of the crystal potential, and thus the sym- 
metry relation (3) cannot be applied. The self-terms are 
obtained from the condition of translation invariance 
as 

½[O(lkr, lkr) + Or(lkr, lkr)] = ~',lkr, lkr) 

= - ~ ' O  (lkr, l ' k ' r ' ) ,  (4) 
l ' k ' r '  

cf. Martin [1971, equation (8)]. In ~ '  the term l ' k ' r '=lkr  
is excluded. The condition of translation invariance, 
on the one hand, operates as the definition of the self- 
terms ~p(lkr, lkr) and, on the other hand, imposes a 
symmetry condition on the interatomic force constants 
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which are used on the right-hand side of (4) (the left- 
hand side is always symmetric). We express this sym- 
metry condition separately by writing 

~ '  ¢P(lkr, l 'k ' r ' )= ~ '  ¢#T(lkr, l 'k'r') . (5) 
l ' k ' r "  l ' k ' r "  

Equation (5) is always fulfilled for axially symmetric 
forces which depend only on the magnitude of the 
separation of the atoms Ikr and FUr',  cf. Maradudin, 
Montroll & Weiss [1963, equation (2.1.20)]. 

Now we take into account the fact that we treat a 
molecular crystal. Only interactions among atoms of 
different molecules are important for the intermolec- 
ular force constants. Thus we have to exclude intra- 
molecular interactions. We can do this by writing 

@(lkr, lkr') = O, 9(lkr, lkr') = O, r' # r . (6) 

For the molecular crystal we write the intermolecular 
force constants by analogy with (1), in the form of a 
6 x 6 matrix 

dP66(lk, l ,k,)= ( (~t(lk, l 'k') (~tcorr(Ik, l 'k') ) 2 . (7) @co,,(lk, l 'k') @rot(lk, l 'k') 

As for the atomic crystal, in the dynamical matrices 
of the molecular crystal only the sums 

1 t t T r t z[@66(lk, l k ) + @66(/k ,lk)]=-966(lk, l 'k  ') (8a) 

occur, and not the single force-constant matrices 
@66(lk, l 'k'). The proof of this statement is fully anal- 
ogous to that for atomic crystals, of. Scheringer (1974). 
966 decomposes into the four 3 x 3  submatrices 

1 2 9,, 9corr, 9rot" With equation (7) and the definition c o r r ,  

(8a) we have for 1 2 9corr and 9 ¢ o r r  

9tco,,(lk, l 'k') 1 1 , , 2r , , l k ) + ~eorr(/ k ,lk)] (8b) = 2[Oeorr(lk, 
2 t t 1 2 " t v =~[(1) .... (lk, l k )+@ .... (l 'k',lk)] . (8c) . . . .  (lk, l k ) 1r 

With the definition (8a) the relation 

966(lk, l ' k ' )= 9T6(l'k',lk) (9) 

holds for any force-constant matr ix  d~ee(lk, i'k'). Equa- 
t ion (9) ensures that the dynamical matrices of a molec- 
ular crystal are always Hermitian. For the self-terms, 
l ' k '=  lk, (9) reduces to the symmetry relation 966 = 966"T 
Thus, as for the atomic crystal, the result for the molec- 
ular crystal holds that we need not (and are not able 
to) determine the self-term force-constant matrices 
ID6e(Ik, lk), but only the symmetric matrices Ipa6(Ik, lk). 

The  intermolecular force-constants, expressed in 
terms of the interatomic force constants, were given by 
Hahn & Biem (1963),~Yenkataraman & Sahni (1970), 
DPP, and Scheringer (1973). Here, we use the matrix 
representation of our earlier paper. The 3 x 3 matrices 
in ( I ) 6 6  of equation (7) have the form 

. .  - ~'k" ": 

@t(lk, l ' k ' )= ~ @(lkr, l 'k'r ') , (10a) 
p , t  

• ~Lr~(lk, l 'k')= ~ @(lkr, l'k'r') V,r,(/'k'), (10b) 
/.r e 

2 t~eorr(lk, l ' k ' )= ~ Vr(lk)CP(lkr, l 'k '  r') , (10c) 
rF t 

' ' V,(lk)@(lkr, l k r )V, .( l 'k ' ) .  (10d) *ro,(lk, t ~)= ~ ' "  " 
r e '  

The matrix V~(lk) contains the Cartesian coordinates of 
the atom r in the molecule lk, referred to an arbitrary 
molecular origin, in the form of the antisymmetric 
tensor 

V,(lk) = Z 0 - Z  (11) 

- Y X 0 (tk) 

Equations (10) hold only for the cases l ' k ' # l k .  If we 
insert the symmetry relation (3) for the interatomic 
force constants into the equation (10) for the inter- 
molecular force constants, we obtain the analogous 
result, namely 

dp66(lk, l 'k')=dp[6(l'k',lk), l 'k' # lk , (12a) 

and, in particular 
l t t 2 T  t t @¢o,r(lk, l k ) = @co,~(/k , l k ) ,  (12b) 

2 ' ' = { ~ c o r r ( /  k , l k ) .  ( 1 2 c )  @¢or~(/k, l k ) 1T , , 

Equations 02) can also be obtained from the definition 
of the intermolecular force constants as the second 
derivatives of the potential energy of a molecular 
crystal with respect to the translation and libration 
amplitudes, cfi Pawley [1967, equation (3)]. With (12) 
966(lk, l 'k') reduces to @66(lk, l 'k') so that the formula- 
tion (8) is not relevant for the cases l ' k ' ¢ l k .  For the 
self-terms l ' k '=  lk, however, (8) is important since we 
cannot determine the single matrices @66(lk, lk). 

In order to derive the self-terms of the intermolec- 
ular force constants we substitute the force-constant 
matrices 9 for the corresponding matrices @ in (10). 
Obviously equations (10) for the intermolecular force- 
constants remain unaltered in type with this procedure. 
We now apply the new equations (10) in order to cal- 
culate the self-terms l 'k '  = lk. By virtue of (6) [exclusion 
of intramolecular interactions] the double summation 
over rr '  reduces to a single summation over r. Then we 
apply the condition (4) of translation invariance where- 
by the double summation over rr '  is introduced again. 
This enables us to express the results in terms of the 
intermolecular force constants (10). With 1 9 c o r r  we then 
have to apply the symmetry condition (5) of translation 
invariance and (12e). Thus we obtain 

9,(lk, lk)= ~ 9(lkr, l k r ) = -  ~ ~ '  @(lkr, l 'k ' r ' )  
r r r '  l ' k '  

= - ~ '  @,(lk, l ' k ' ) ,  (13a) 
/ ' k '  

9torr(lk, lk)= ~ 9~,Ikr, lkrlVr(lk) 
r 

= - ~. ~ '  @(lkr, l 'k'r')VT(lk) 
rr '  l ' k "  

v 1 t t 
= - -  ~ ~ } c o r r ( /  k , l k )  

l ' k '  

(13b) 

O¢o~,(lk, l 'k') , .-~ __  ~ _ l  2 T  

l ' k '  
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~2°rr(lk, l k )=  E V , ( l k ) ? ~ l k r ,  l k r )  
i, 

= - ~ '  o L , , ( l k ,  l ' k ' ) ,  
l 'k' 

(13c) 

¢~o,(lk, lk)= ~ V.(lk)~lkr, lkr)Vr(lk) 
r 

= _ ~ '  ~ V.(lk)O(lkr, l'k'r')Vr~(lk) 
l'k' rr' 

# - -  E '  d~r°t( lk ,  l ' k ' ) "  
l 'k' 

(13d) 

Obviously the self-terms (13) satisfy the symmetry 
relation (9) since the matrices q(lkr, lkr) are symmetric, 
thus giving rise to dynamical matrices which are Her- 
mitian. For the self-terms 9t and ~2or r we obtain a 
result which is formally analogous to the result for the 
self-terms of atomic crystals, cf. (13a) and (13c) with 
(4). The rotational self-term ~rot differs in structure 
from the other self-terms. We have stressed this by 
writing the inequality (13d). The result (13d) ensures 
that, for a crystal with one molecule in the unit cell, 
three rotational frequencies are obtained for the wave 
vector q = 0 which are greater than zero. 

3. The role of rotation invariance 

Now we shall investigate the role rotation invariance 
plays with respect to the self-terms. We begin with the 
condition of rotation invariance for atomic crystals. 
We assume that the atoms are located in their equi- 
librium positions. Then some terms vanish in the equa- 
tion for the condition of rotation invariance; these are 
often given in the literature. (We have already made 
this assumption throughout this paper since the inter- 
atomic force constants are defined as second derivatives 
of the crystal potential only when we make this as- 
sumption.) 

There are several formulations for the condition of 
rotation invariance which differ in how the origin for 
the rotation of the crystal is chosen. Let us generally 
denote this origin by V0 and let the position of the 
molecule lk in the crystal be V(lk), then the condition 
of rotation invariance reads 

~(lkr, Z'k' r')[Vr(l'k') + V~(l 'k ' ) -  V~l=O . (14) 
l 'ktr' 

[V(l'k')+V,.,(l'k') is then the position of the atom 
l'k'r' in the crystal.] For the choice of the rotation 
origin Vo of the crystal three cases are interesting: 

V 0 = 0 ,  (15a) 

Vo=V(Zk), (15b) 
v0=v(z~)+ v~(z~). (15c) 

The three formulations (15a), (15b) and (15c) of equa- 
tion (14) are equivalent and can be transformed into 
each other by applying the condition of translation in- 
variance, For V 0 does not depend on l'k'r', and we can 

place the V0 term in equation (14) in front of the sum. 
For this part of equation (14) we obtain 

V0 ~ qfflkr, l'k'r')=O (16) 
l'k'r" 

using condition (4) of translation invariance, and equa- 
tions (2a) and (3). Hence the V0 term in (14) only 
means that in the sum over l'k'r' a zero term is added. 

The condition of rotation invariance in the literature 
[Born & Huang, 1954, equation (23.23); Leibfried, 
1955, equation (36.3); Maradudin, Montroll & Weiss, 
1963, equations (2.1.6) and (2.1.19)] is not correctly 
given in terms of the force constant matrices ~ .  Rather 
we should write 9 instead of ~ .  The proper differen- 
tiation of O~/Ou~(lk) in equation (23.19) of Born & 
Huang (1954), and in equation (2.1.13) of Maradudin, 
Montroll & Weiss (1963) will yield the desired result, 
cf  Scheringer (1974). 

Equation (15a) gives the shortest presentation of 
(14). With (15b) and (15c) a presentation is obtained 
which is independent of the chosen coordinate origin. 
(15c) is particularly advantageous in that the condition 
of rotation invariance is only described by the coordi- 
nates of the atoms lkr and l 'k'r'to which the interatomic 
force constants are referred. With the use of (15e) and 
(14), however, it is impossible to derive self-terms for 
the intermolecular force constants unless one also ap- 
plies the condition of translation i nvariance. With (15a) 
or (15b) self-terms can be directly derived from equa- 
tion (14) which we shall do in the following. 

We apply equation (14) to molecular crystals. We 
use the form (15b), V0 = V(lk), sum over all atoms r in 
(14), and obtain 

~ qfflkr, l 'k'r')[Vr(l'k')-Vr(lk)] 
l 'k' rr' 

+ ~ ~ 9(lkr, Z'k'r')Vr,,(l'k')=O. (17) 
l'k" rr" 

In equation (17) we now replace the sum over rr' by 
the intermolecular force constants (10). Since the dif- 
ference V ( / ' k ' ) -  V(lk) is zero for l 'k '= lk, we can write 
~ '  instead o f ~  in the first term of (17), and we can use 
~b instead of q~. In the second term of (17) we eliminate 
the self-term l 'k '=lk and replace q~ by cb in the remain- 
ing sum Y/. Then we obtain from (17) 

'P~orr(Ik, tk)= - ~ '  *,(tk, r k ' ) [ v r ( rk ' ) -  V~(lk)] 
l 'k' 

- Z,' *~or,(Zk, l 'k ') .  (18) 
l ' k '  

A result analogous to (18) is obtained when we first 
multiply equation (14) by Vr(lk) from the left side and 
then sum over all atoms r. Instead of (18) we then ob- 
tain 

*~orr(lk, Z'k')[V~(l'k ') V~(Zk)] ,Wo,(Zk, Zk)= - Z '  ~ 
l 'g"  

- Z '  * ro t (Zk ,  Z 'k ' )  " (19) 
l 'k' 
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Now, we develop the condition of rotation invar- 
iance for molecular crystals by choosing the rotation 
origin (15c), Vo=V(lk)+V,(lk). In equation (14) we 
sum over all atoms r, as above. In the resulting sum all 
terms l ' k '=lk  vanish. For l 'k 'r '=lkr the difference 
V(l 'k ' )+Vr,( l 'k ' ) -V(lk)-V,( lk)  is zero, and the terms 
l ' k '=lk  with r ' # r  are zero by virtue of equation (6). 
Thus no self-terms occur. Hence we can write ~ '  in- 
stead of ~ and • instead of q~. Then we obtain from 
equation (14) 

*(Zkr, Z'k' r')[VT(Z'k')- VT(Zk)] 
1"1¢' rr'  

+ ~ ' ~  *(lkr, l'k'r')V~,(l'k') 
l ' k '  rr'  

(20) 
l ' k '  rr'  

Equation (20) represents the condition of rotation in- 
variance for molecular crystals expressed by the inter- 
atomic force constants and coordinates of the atoms in 
different molecules. Equation (20) corresponds to 
DPP (2.11). DPP (2.1 I) is not fully correct; the sum- 
mation in the last two terms of DPP (2.11) should also 
be ~' .  

l ' M  

The expressions (18) and (19) for the self-terms 1 ~corr 
and ~rot are identical with the expressions (13b) and 
(13d) respectively if and only if the force-constant 
model used satisfies the condition of rotation invari- 
ante. This can be shown by comparing the terms in 
equation (20) with the results (18) and (19) for the self- 
terms. A comparison of (18) and (20) leads to 

~tcorr(lk, lk)leq.,18,=-~' ~ ~(lkr, l'k'r')Vr(lk). (21) 
l ' k '  rr'  

If one multiplies equation (20) by V,(lk) from the left- 
hand side and then compares with (19) one obtains 

q)rot (lk, lk) le,a.~t9) = 

- ~ '  ~ V,(lk)*(lkr, l'k'r')Vr~ (lk) . (22) 
1'/¢' rr' 

The right-hand sides of equations (21) and (22) are 
respectively identical with the expressions (13b) and 
(13d) which we have already derived from the condition 
of translation invariance. Since (21) and (22) can only 
be obtained when (20) holds our statement is proved. 

Venkataraman & Sahni (1970) give sum rules for 
calculating the self-terms of molecular crystals, whereby 
they choose the rotation origin (15a), V0=0. Equation 
(II.A. 18) of these authors corresponds to our equations 
(17) and (18); (II.A.19) to our result (19). We note that 
in Venkataraman & Sahni's (1970) equations the force 
constants • should be replaced by the sums q~ since 
self-terms occur. 

The results (13a), (18), (13e), and (19) are in agreement 
with DPP's expressions (2.10). [Note that DPP give 
the self-terms expressed as elements of the dynamical 
matrix of zero wave vector; this gives rise to a slight 

change in the summation indices l'k'.] Comparison of 
the results shows that (13b) and (13d) have a simpler 
structure than the expressions DPP (2.10) since there 
is only one summation over l'k', and since the lattice 
vectors V( l 'k ' ) -V( /k)  do not occur. 

4. Conclusion 

Since our expressions (13) for the self-terms differ from 
DPP's expressions (2.10) we are going to assess the 
usefulness of both the results for actual force-constant 
model calculations. Here we are guided by the fact that 
the dynamical matrices must be Hermitian. This 
requirement is a formal one, and is generally fulfilled 
when the (physical) conditions of translation and rota- 
tion invariance are satisfied. In actual calculations the 
symmetry condition (5) of translation invariance can 
easily be imposed on the interatomic force constants, 
whereas the condition (20) of rotation invariance is 
cumbersome to use, and in most cases (with atomic 
crystals) it is not explicitly applied. Probably, the con- 
dition of rotation invariance is not very stringent and 
its effect on a set of interatomic force-constants small. 

As our derivation in §2 has shown, our self-terms (13) 
ensure that the dynamical matrices are Hermitian if 
the interatomic force constants used satisfy the sym- 
metry condition (5) of translation invariance. However, 
it is not necessary to apply the condition (20) of rota- 
tion invariance with the self-terms (13) in order to 
obtain Hermiticity. 

DPP's expressions (2.10) [our expressions (13a), 
(18), (13c), and (19)] generally do not fulfil the require- 
ment of Hermiticity. In order to guarantee Hermiticity 
DPP propose the condition of rotation invariance as a 
constraint on the interatomic force constants, our 
equation (20), their equation (2.11). In contrast to 
DPP's opinion, this condition, by itself, is not suf- 
ficient to satisfy the requirement of Hermiticity, but 
rather, as our discussion in § 3 has shown, fulfilling 
the condition of rotation invariance means only 
that DPP's expressions (2.10) are identical with our 
expressions (13). Thus, in order to fulfil the require- 
ment of Hermiticity the symmetry condition (5) of 
translation invariance must also be satisfied. Hence, 
with DPP's self-terms (2.10), the condition (20) of rota- 
tion invariance and the symmetry condition (5) of 
translation invariance must be imposed on the inter- 
atomic force constants used. [It can be shown that 
DPP's self-terms generally do not give rise to Hermi- 
tian dynamical matrices when only the symmetry con- 
dition (5) of translation invariance is imposed.] 

Hence, we conclude that the use of (13) instead of 
DPP (2.10) offers three advantages. First, the essential 
requirement of Hermiticity is fulfilled with less effort. 
Secondly, the condition of rotation invariance can be 
used at option. Finally, the self-terms (13b) and (13d) 
can be calculated in a simpler manner than the cor- 
responding expressions in DPP (2.10) since the lattice 
vectors V( l 'k ' ) -V( /k)  do not occur. 
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A Critical Note on the Discriminator Function 
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The value of the residual ((Iobs--Ieale)2)/(12obs) will change when one or more atoms are added to an 
incomplete model of the structure looked for. It is possible to calculate statistically the expected values 
of the residual both for correct and (randomly) incorrect placing of a new fragment. The results then 
show that the correctness of the new atomic position(s) cannot be proved, but only estimated by means 
of the residual as a reliability criterion; the same conclusion applies to the discriminator function. 
Both the residual and the discriminator function, however, can be suitable in the elimination of incorrect 
atomic positions. In some cases even false pseudosymmetry, if any, can be eliminated from a tentative 
electron density map. 

1. Introduction 

It is necessary to have some criteria to be able to in- 
vestigate the reliability of the steps to be taken in a 
completely automated structure evaluation. 

A deconvolution of the Patterson function has been 
discussed previously (Lenstra & Schoone, 1973), in 
which, among other things, the residual ((lob s -- 
Ic,~c)2)/(12obs) has been applied as a reliability criterion. 

The residual as a means to interpret a tentative 
electron density map has already been stated (Lenstra, 
1969). Other investigators have made use of, for in- 
stance, the discriminator function (Hackert & Jacob- 
son, 1970; Jacobson, 1970) or a least-squares refine- 
ment (Koyama, Okada & Itoh, 1970) to locate additional 
atoms. 

These three criteria are founded mainly on the plain 
fact that models obtained in this way are in agreement 
with the correct solutions of the structures. A theoret- 
ical explanation of the behaviour of the residual is 
given in the next section. 

Another important point is the purport of 'correct 
and incorrect placing of an atom'. This will be dis- 
cussed in detail in § 3; is provides some correction and 

completion of Wilson's (1969) treatment Of the residual. 
It is shown that an incorrect addition of an atom under 
certain conditions may decrease the value of the resi- 
dual. One special kind of incorrect positioning of the 
new atom which practically always results in a de- 
creasing value of the residual is dealt with in § 4. 

§ 5 relates the evaluation of these results for a prac- 
tical automated structure determination. 

In § 6 some remarks are made on the discriminator 
function. 

2. Derivation of the values of the residual. 
Experimental results 

For practical mathematical reasons the residual is de- 
fined as: 

(lobs -- Icalc) 2 
H 

R2 = ~ 2 
Iobs 

H 

in which Iobs are the observed intensities and Icale a r e  
the intensities calculated by means of the known 
structure model only. This implies that the observed 


